

Your Ref.: A/YL-KTS/1084

Our Ref.: P25012/TL26010

7 January 2026

The Secretary
Town Planning Board
15/F., North Point Government Offices
333 Java Road, North Point, Hong Kong

By E-mail
tpbpd@pland.gov.hk

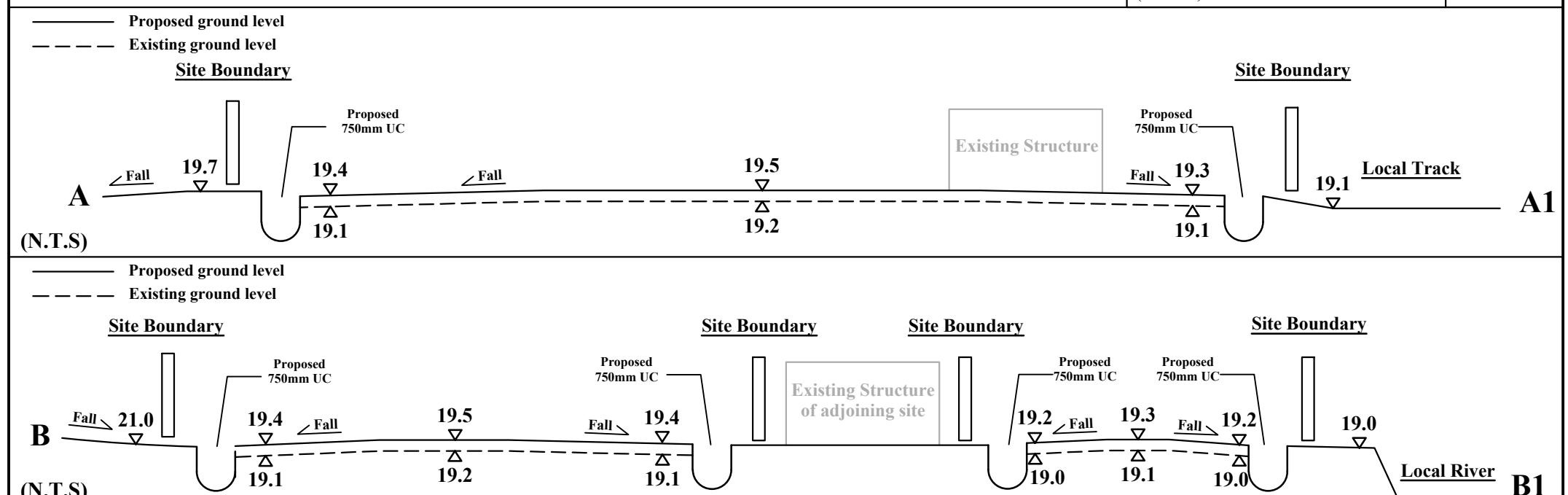
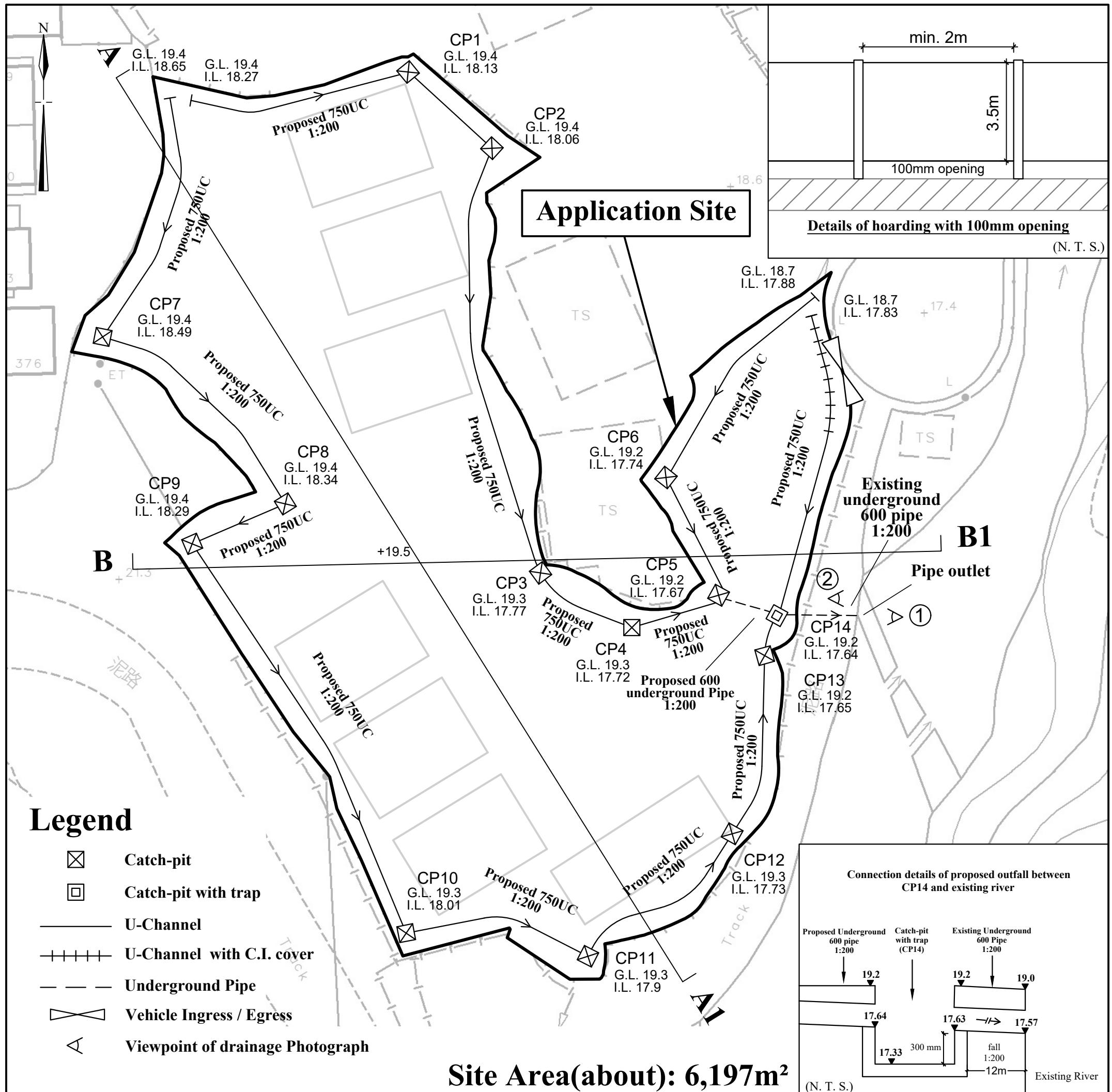
Dear Sir,

Submission of Further Information (FI)

**Proposed Temporary Warehouse (excluding Dangerous Goods Godown)
With Ancillary Office and Associated Filling of Land for a Period of 3 Years in
“Agriculture” Zone, Lots 1012 S.B, 1012 S.C, 1013, 1014 RP, 1015 S.A, 1015 S.B,
1015 RP, 1016 (Part), 1018, 1034 (Part) and 1035 in D.D.113,
Kam Tin, Yuen Long, New Territories
(Application No. A/YL-KTS/1084)**

We write to submit a revised drainage proposal (Plans 6.1b & 6.2b) and hydraulic calculations for the captioned application.

Yours faithfully,
For and on behalf of
Goldrich Planners & Surveyors Ltd.

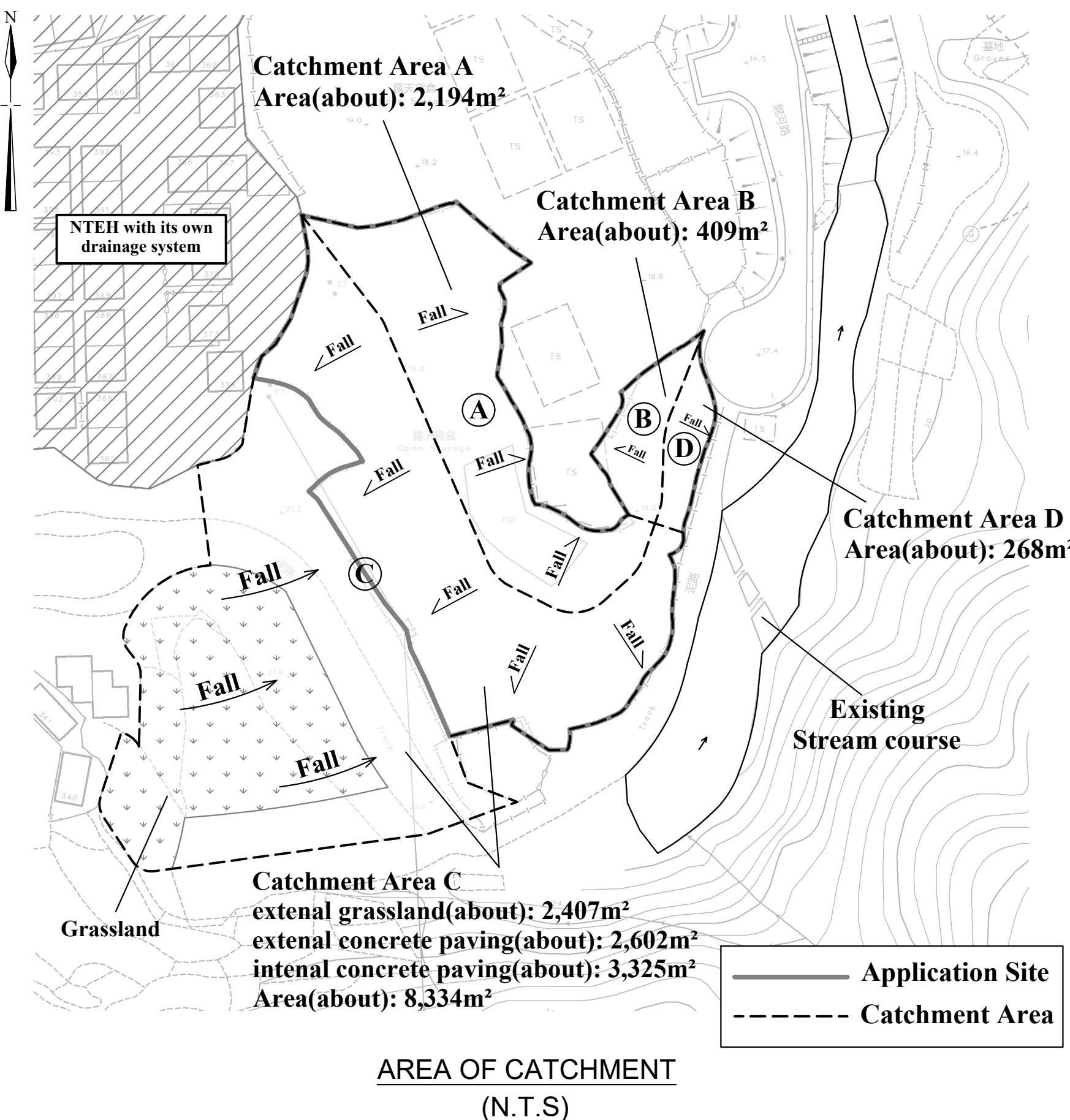
Francis Lau

Encl.

c.c.

DPO/FS&YLE, PlanD (Attn.: Mr. Thomas LAU)

1:500 (A3)


Drainage Proposal

Goldrich Planners & Surveyors Ltd.

January 2026

**Lots 1012 S.B, 1012 S.C, 1013, 1014RP, 1015 S.A, 1015 S.B,
1015 RP, 1016(part), 1018, 1034(part) and 1035 in D.D. 113
Yuen Long, N.T.**

Plan 6.1b (P 25012)

N.T.S	Drainage Proposal Lots 1012 S.B, 1012 S.C, 1013, 1014RP, 1015 S.A, 1015 S.B, 1015 RP, 1016(part), 1018, 1034(part) and 1035 in D.D. 113 Yuen Long, N.T.	Goldrich Planners & Surveyors Ltd.
January 2026		Plan 6.2b (P 25012)

Viewpoint Photo 1

(Photo taken on 7.1.2026)

Viewpoint Photo 2

River

(Photo taken on 7.1.2026)

1 For Catchment Area A

Area, A	=	2194 m ²
Average slope, H	=	0.1 m per 100m
Distance on the line of natural flow, L	=	22 m

$$\text{Time of concentration, } t_o = \frac{0.14465L}{(H^{0.2}A^{0.1})} = \frac{0.14465(22)}{(0.1^{0.2} \cdot 2194^{0.1})} = 2.3 \text{ min}$$

Ref.

SDM 7.5.2 (d)

2 For Proposed UC in Catchment Area A

	From	To
Ground level (mPD)	19.40	19.20
Invert level (mPD)	18.27	17.67

Width of u-channel, w	=	750 mm
Length of u-channel, L _c	=	119.4 m
Depth of vertical part of u-channel, d	=	1155 mm
Gradient of u-channel, S _f	=	(18.27-17.67)/119.4 = 0.005

Cross-Section Area, a	=	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 375^2 + 750 \times 1155$
	=	1.087 m ²
Wetted Perimeter, p	=	$\pi r + 2d = 3.14 \times 375 + 2 \times 1155$
	=	3.488 m
Hydraulic radius, R	=	$a/p = 0.312 \text{ m}$

SDM 8.2.1

3 Use Manning Equation for estimating velocity of stormwater

Take n	=	0.016	for concrete lined channels:-
Allowable velocity, v	=	$R^{1/6} \times (RS_f)^{1/2}/n = (0.312)^{1/6} \times (0.312 \times 0.005)^{1/2} / 0.016$	SDM Table 13
	=	2.04 m/s	SDM Table 12
Time of flow, t _f	=	1.0 min	

4 Use "Rational Method" for calculation of design flow

$$\text{Design intensity, } i = \frac{a}{(t_o + t_f + b)^c} = \frac{1.087}{(2.3 + 1 + 3.29)^{0.355}} \text{ for return period T = 50 years} = 259$$

SDM 4.3.2
Corrigendum 1/2024
SDM Table 3a

Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A
Flat Glassland(heavy soil)	0.25	0.0	0.0
Concrete Paving	0.95	2194.0	2084.3
SUM =			2084.3

$$\text{Upstream flow, } Q_u = 0 \text{ m}^3/\text{s}$$

$$\text{Design flow, } Q_d = 1.16 \times 0.278i \sum C_i A_i + Q_u \text{ where } A_i \text{ is in km}^2$$

$$= 1.16 \times 0.278 \times 259 \times 2084.3 / 1000000 + 0$$

$$= 0.174 \text{ m}^3/\text{s}$$

SDM 7.5.2 (a)
Corrigendum 1/2022

$$\text{Allowable flow, } Q_a = a \times v$$

$$= 1.087 \times 2.04$$

$$= 2.214 \text{ m}^3/\text{s}$$

> Q_d (O.K.)

Reference was made to Stormwater Drainage Manual (SDM) by DSD

Scale: NA

Hydraulic Calculation

Goldrich Planners & Surveyors Ltd.

January 2026

Lots 1012 S.B, 1012 S.C, 1013, 1014 RP, 1015 S.A, 1015 S.B, 1015 RP, 1016 (Part), 1018, 1034 (Part) and 1035 in D.D.113, Kam Tin, Yuen Long, New Territories

Page 1
(P25012)

1 For Catchment Area B

Area, A =	409 m ²	Ref.
Average slope, H =	0.1 m per 100m	
Distance on the line of natural flow, L =	12 m	
Time of concentration, t_o = $0.14465L / (H^{0.2}A^{0.1})$	= $0.14465 (12) / (0.1^{0.2} \cdot 409^{0.1})$	SDM 7.5.2 (d)
	= 1.5 min	

2 For Proposed UC in Catchment Area B

	From	To
Ground level (mPD)	18.70	19.20
Invert level (mPD)	17.88	17.67

Width of u-channel, w =	750 mm	
Length of u-channel, L_c =	42.5 m	
Depth of vertical part of u-channel, d =	1155 mm	
Gradient of u-channel, S_f = $(17.88 - 17.67) / 42.5$	= 0.005	
Cross-Section Area, a = $0.5 \pi r^2 + w d$	= $0.5 \times 3.14 \times 375^2 + 750 \times 1155$	
	= 1.087 m ²	
Wetted Perimeter, p = $\pi r + 2d$	= $3.14 \times 375 + 2 \times 1155$	
	= 3.488 m	
Hydraulic radius, R = a / p		SDM 8.2.1
	= 0.312 m	

3 Use Manning Equation for estimating velocity of stormwater

Take n = 0.016	for concrete lined channels:-	SDM Table 13
Allowable velocity, v = $R^{1/6} \times (RS_f)^{1/2} / n$	= $(0.312)^{1/6} \times (0.312 \times 0.005)^{1/2} / 0.016$	SDM Table 12
	= 2.02 m/s	
Time of flow, t_f =	0.4 min	

4 Use "Rational Method" for calculation of design flow

Design intensity, i = $a / (t_o + t_f + b)^c$		SDM 4.3.2
	= $505.5 / (1.5 + 0.4 + 3.29)^{0.355}$ for return period T = 50 years	Corrigendum 1/2024
	= 283	SDM Table 3a

Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A
Flat Glassland(heavy soil)	0.25	0.0	0.0
Concrete Paving	0.95	409.0	388.6
SUM =			388.6

$$\text{Upstream flow, } Q_u = 0 \text{ m}^3/\text{s}$$

$$\begin{aligned} \text{Design flow, } Q_d &= 0.278i \sum C_i A_i + Q_u \quad \text{where } A_i \text{ is in km}^2 \\ &= 1.16 \times 0.278 \times 283 \times 388.55 / 1000000 + 0 \\ &= 0.035 \text{ m}^3/\text{s} \end{aligned} \quad \begin{matrix} \text{SDM 7.5.2 (a)} \\ \text{Corrigendum 1/2022} \end{matrix}$$

$$\begin{aligned} \text{Allowable flow, } Q_a &= a \times v \\ &= 1.087 \times 2.02 \\ &= 2.196 \text{ m}^3/\text{s} \end{aligned}$$

> Q_d (O.K.)

Reference was made to Stormwater Drainage Manual (SDM) by DSD

Scale: NA	Hydraulic Calculation	Goldrich Planners & Surveyors Ltd.
January 2026	Lots 1012 S.B, 1012 S.C, 1013, 1014 RP, 1015 S.A, 1015 S.B, 1015 RP, 1016 (Part), 1018, 1034 (Part) and 1035 in D.D.113, Kam Tin, Yuen Long, New Territories	Page 2 (P25012)

1 For Connection between CP5 and CP14		Ref.																								
Area, A = 0 m ² Average slope, H = 0.1 m per 100m Distance on the line of natural flow, L = 0 m																										
Time of concentration, t_o = $0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (0) / (0.1^{0.2}0^{0.1})$ = 0.0 min		SDM 7.5.2 (d)																								
2 For Proposed Pipe after CP5																										
Size(Diameter) w = 600 mm Length of Pipe = 6 m Design the pipe to 9/10 full bore capacity, then Area of ventilated portion = 0.1 of pipe area $\frac{1}{2}r^2\theta - \frac{1}{2}r^2\sin(\theta)$ = $0.1\pi r^2$ $\theta - \sin(\theta)$ = 0.2π θ = 1.63 rad = 93.4° (By trial and error)																										
Area A = $0.9\pi r^2$ = $0.9 \times 3.14 \times 600^2$ = 1017360 mm ² = 1.017 m ²		SDM 8.2.1																								
Wetted Perimeter P = $2\pi r - r\theta$ = 2792 mm Hydraulic radius R = A/P = 364.4 mm																										
3 Use Manning Equation for estimating velocity of stormwater																										
Fall S = 1: 200 Take n = 0.016 for concrete lined channels:- Allowable velocity, v = $R^{1/6} \times (RS_f)^{1/2}/n = (0.364)^{1/6} \times (0.364/200)^{1/2} / 0.016$ = 2.25 m/s Time of flow, t_f = 0.04 min		SDM Table 13 SDM Table 12																								
4 Use "Rational Method" for calculation of design flow																										
Design intensity, i = $a / (t_o + t_f + b)^c$ = $505.5 / (0.0 + 0.04 + 3.29)^{0.355}$ for return period T = 50 years = 330		SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a																								
<table> <thead> <tr> <th>Type of surface</th> <th>Runoff Coefficient C</th> <th>Catchment Area A (m²)</th> <th>C x A</th> </tr> </thead> <tbody> <tr> <td>Flat Glassland(heavy soil)</td> <td>0.25</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <td>Concrete Paving</td> <td>0.95</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <td>Macadam Roadways</td> <td>0.425</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <td>Wooded Areas</td> <td>0.105</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <td colspan="2">SUM =</td><td>0.0</td><td></td></tr> </tbody> </table>		Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A	Flat Glassland(heavy soil)	0.25	0.0	0.0	Concrete Paving	0.95	0.0	0.0	Macadam Roadways	0.425	0.0	0.0	Wooded Areas	0.105	0.0	0.0	SUM =		0.0		SDM 7.5.2 (b)
Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A																							
Flat Glassland(heavy soil)	0.25	0.0	0.0																							
Concrete Paving	0.95	0.0	0.0																							
Macadam Roadways	0.425	0.0	0.0																							
Wooded Areas	0.105	0.0	0.0																							
SUM =		0.0																								
Upstream flow, Q_u = 0.209 m ³ /s																										
Design flow, Q_d = $0.278i \sum C_i A_i + Q_u$ where A_i is in km ² = $1.16 \times 0.278 \times 330 \times 0 / 1000000 + 0.209$ = 0.209 m ³ /s		SDM 7.5.2 (a) Corrigendum 1/2022																								
Allowable flow, Q_a = $a \times v$ = 1.02×2.25 = 2.294 m ³ /s > Q_d (O.K.)																										
Reference was made to Stormwater Drainage Manual (SDM) by DSD																										
Scale: NA	Hydraulic Calculation Lots 1012 S.B, 1012 S.C, 1013, 1014 RP, 1015 S.A, 1015 S.B, 1015 RP, 1016 (Part), 1018, 1034 (Part) and 1035 in D.D.113, Kam Tin, Yuen Long, New Territories	Goldrich Planners & Surveyors Ltd.																								
January 2026		Page 3 (P25012)																								

1 For Catchment Area C

Ref.

Area, A =	8334 m ²	
Average slope, H =	0.1 m per 100m	
Distance on the line of natural flow, L =	35 m	
Time of concentration, t_o =	$0.14465L / (H^{0.2}A^{0.1})$	$= 0.14465 (35) / (0.1^{0.2} \cdot 8334^{0.1})$
		3.3 min

SDM 7.5.2 (d)

2 For Proposed UC in Catchment Area C

	From	To
Ground level (mPD)	19.40	19.20
Invert level (mPD)	18.65	17.64

Width of u-channel, w =	750 mm	
Length of u-channel, L_c =	203 m	
Depth of vertical part of u-channel, d =	1185 mm	
Gradient of u-channel, S_f =	$(18.65 - 17.64) / 203 = 0.005$	
Cross-Section Area, a =	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 375^2 + 750 \times 1185$	
	= 1.110 m ²	
Wetted Perimeter, p =	$\pi r + 2d = 3.14 \times 375 + 2 \times 1185$	
	= 3.548 m	
Hydraulic radius, R =	a / p	
	= 0.313 m	

SDM 8.2.1

3 Use Manning Equation for estimating velocity of stormwater

SDM Table 13

Take n =	0.016	for concrete lined channels:-	
Allowable velocity, v =	$R^{1/6} \times (RS_f)^{1/2} / n = (0.313)^{1/6} \times (0.313 \times 0.005)^{1/2} / 0.016$		SDM Table 12
	= 2.03 m/s		

Time of flow, t_f = 1.7 min

4 Use "Rational Method" for calculation of design flow

SDM 4.3.2
Corrigendum 1/2024
SDM Table 3a

Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A
Flat Glassland(heavy soil)	0.25	2407.0	601.8
Concrete Paving	0.95	5927.0	5630.7
SUM =			6232.4

Upstream flow, Q_u = 0 m³/s

SDM 7.5.2 (a)
Corrigendum 1/2022

$$\begin{aligned} \text{Design flow, } Q_d &= 0.278i \sum C_i A_i + Q_u \quad \text{where } A_i \text{ is in km}^2 \\ &= 1.16 \times 0.278 \times 239 \times 6232.4 / 1000000 + 0 \\ &= 0.481 \text{ m}^3/\text{s} \end{aligned}$$

$$\begin{aligned} \text{Allowable flow, } Q_a &= a \times v \\ &= 1.11 \times 2.03 \\ &= 2.254 \text{ m}^3/\text{s} \end{aligned}$$

> Q_d (O.K.)

Reference was made to Stormwater Drainage Manual (SDM) by DSD

Hydraulic Calculation

Goldrich Planners & Surveyors Ltd.

Scale: NA

January 2026

Lots 1012 S.B, 1012 S.C, 1013, 1014 RP, 1015 S.A, 1015 S.B, 1015 RP, 1016 (Part), 1018, 1034 (Part) and 1035 in D.D.113, Kam Tin, Yuen Long, New Territories

Page 4
(P25012)

1 For Catchment Area D

Area, A =	268 m ²	Ref.
Average slope, H =	0.1 m per 100m	
Distance on the line of natural flow, L =	10 m	
Time of concentration, t_o = $0.14465L / (H^{0.2}A^{0.1})$	= $0.14465 (10) / (0.1^{0.2} \cdot 268^{0.1})$	SDM 7.5.2 (d)
	= 1.3 min	

2 For Proposed UC in Catchment Area D

	From	To
Ground level (mPD)	18.70	19.20
Invert level (mPD)	17.83	17.64

Width of u-channel, w =	750 mm	SDM 8.2.1
Length of u-channel, L_c =	37.5 m	
Depth of vertical part of u-channel, d =	1185 mm	
Gradient of u-channel, S_f = $(17.83 - 17.64) / 37.5 = 0.005$		
Cross-Section Area, a = $0.5 \pi r^2 + w d$	= $0.5 \times 3.14 \times 375^2 + 750 \times 1185$	
	= 1.110 m ²	
Wetted Perimeter, p = $\pi r + 2d$	= $3.14 \times 375 + 2 \times 1185$	
	= 3.548 m	
Hydraulic radius, R = a / p		
	= 0.313 m	

3 Use Manning Equation for estimating velocity of stormwater

Take n = 0.016 for concrete lined channels:-	SDM Table 13 SDM Table 12
Allowable velocity, v = $R^{1/6} \times (RS_f)^{1/2} / n = (0.313)^{1/6} \times (0.313 \times 0.005)^{1/2} / 0.016$	
= 2.05 m/s	
Time of flow, t_f = 0.3 min	

4 Use "Rational Method" for calculation of design flow

Design intensity, i = $a / (t_o + t_f + b)^c$	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a
= $505.5 / (1.3 + 0.3 + 3.29)^{0.355}$ for return period T = 50 years	
= 287	

Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A
Flat Glassland(heavy soil)	0.25	0.0	0.0
Concrete Paving	0.95	268.0	254.6
SUM = 254.6			

$$\text{Upstream flow, } Q_u = 0 \text{ m}^3/\text{s}$$

$$\begin{aligned} \text{Design flow, } Q_d &= 0.278i \sum C_i A_i + Q_u \quad \text{where } A_i \text{ is in km}^2 \\ &= 1.16 \times 0.278 \times 287 \times 254.6 / 1000000 + 0 \\ &= 0.024 \text{ m}^3/\text{s} \end{aligned} \quad \begin{matrix} \text{SDM 7.5.2 (a)} \\ \text{Corrigendum 1/2022} \end{matrix}$$

$$\begin{aligned} \text{Allowable flow, } Q_a &= a \times v \\ &= 1.11 \times 2.05 \\ &= 2.274 \text{ m}^3/\text{s} \end{aligned}$$

$$> Q_d \text{ (O.K.)}$$

Reference was made to Stormwater Drainage Manual (SDM) by DSD

Scale: NA	Hydraulic Calculation	Goldrich Planners & Surveyors Ltd.
January 2026	Lots 1012 S.B, 1012 S.C, 1013, 1014 RP, 1015 S.A, 1015 S.B, 1015 RP, 1016 (Part), 1018, 1034 (Part) and 1035 in D.D.113, Kam Tin, Yuen Long, New Territories	Page 5 (P25012)

1 For Connection between CP14 to existing river		Ref.																								
Area, A = 0 m ² Average slope, H = 0.1 m per 100m Distance on the line of natural flow, L = 0 m																										
Time of concentration, t_o = $0.14465L / (H^{0.2}A^{0.1})$ = $0.14465(0) / (0.1^{0.2}0^{0.1})$ = 0.0 min		SDM 7.5.2 (d)																								
2 For Pipe after Cp14																										
Size(Diameter) w = 600 mm Length of Pipe = 12 m Design the pipe to 9/10 full bore capacity, then Area of ventilated portion = 0.1 of pipe area $\frac{1}{2}r^2\theta - \frac{1}{2}r^2\sin(\theta)$ = $0.1\pi r^2$ $\theta - \sin(\theta)$ = 0.2π θ = 1.63 rad = 93.4° (By trial and error)																										
Area A = $0.9\pi r^2$ = $0.9 \times 3.14 \times 600^2$ = 1017360 mm ² = 1.017 m ²		SDM 8.2.1																								
Wetted Perimeter P = $2\pi r - r\theta$ = 2792 mm Hydraulic radius R = A/P = 364.4 mm																										
3 Use Manning Equation for estimating velocity of stormwater																										
Fall S = 1: 200 Take n = 0.016 for concrete lined channels:- Allowable velocity, v = $R^{1/6} \times (RS_f)^{1/2}/n$ = $(0.364)^{1/6} \times (0.364/200)^{1/2} / 0.016$ = 2.25 m/s Time of flow, t_f = 0.089 min		SDM Table 13 SDM Table 12																								
4 Use "Rational Method" for calculation of design flow																										
Design intensity, i = $a / (t_o + t_f + b)^c$ = $505.5 / (0.0 + 0.09 + 3.29)^{0.355}$ for return period T = 50 years = 328		SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a																								
<table> <thead> <tr> <th>Type of surface</th> <th>Runoff Coefficient C</th> <th>Catchment Area A (m²)</th> <th>C x A</th> </tr> </thead> <tbody> <tr> <td>Flat Glassland(heavy soil)</td> <td>0.25</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <td>Concrete Paving</td> <td>0.95</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <td>Macadam Roadways</td> <td>0.425</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <td>Wooded Areas</td> <td>0.105</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <td colspan="2"></td><td>SUM =</td><td>0.0</td> </tr> </tbody> </table>		Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A	Flat Glassland(heavy soil)	0.25	0.0	0.0	Concrete Paving	0.95	0.0	0.0	Macadam Roadways	0.425	0.0	0.0	Wooded Areas	0.105	0.0	0.0			SUM =	0.0	SDM 7.5.2 (b)
Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A																							
Flat Glassland(heavy soil)	0.25	0.0	0.0																							
Concrete Paving	0.95	0.0	0.0																							
Macadam Roadways	0.425	0.0	0.0																							
Wooded Areas	0.105	0.0	0.0																							
		SUM =	0.0																							
Upstream flow, Q_u = 0.714 m ³ /s																										
Design flow, Q_d = $0.278i \sum C_i A_i + Q_u$ where A_i is in km ² = $1.16 \times 0.278 \times 328 \times 0 / 1000000 + 0.714$ = 0.714 m ³ /s		SDM 7.5.2 (a) Corrigendum 1/2022																								
Allowable flow, Q_a = $a \times v$ = 1.02×2.25 = 2.294 m ³ /s > Q_d (O.K.)																										
Reference was made to Stormwater Drainage Manual (SDM) by DSD																										
Scale: NA	Hydraulic Calculation	Goldrich Planners & Surveyors Ltd.																								
January 2026	Lots 1012 S.B, 1012 S.C, 1013, 1014 RP, 1015 S.A, 1015 S.B, 1015 RP, 1016 (Part), 1018, 1034 (Part) and 1035 in D.D.113, Kam Tin, Yuen Long, New Territories	Page 6 (P25012)																								